8.1. Actions of discrete groups. Let Γ be a group acting on a topological space X by homeomorphisms.

- (a) Show that Γ acts properly discontinuously if and only if the map $\Gamma \times X \to X \times X$ given by $(\gamma, x) \mapsto (\gamma x, x)$ is *proper*, that is, the inverse image of any compact set is compact. Here Γ is equipped with the discrete topology.
- (b) Show that if X is a topological manifold and Γ acts freely and properly discontinuously, then the quotient space X/Γ is a topological manifold and the projection $\pi: X \to X/\Gamma$ is a covering map. (We assume topological manifolds to be Hausdorff.)
- (c) Suppose now that X, M are connected topological manifolds, $F: X \to M$ is a covering map, and $\Gamma \subset \text{Homeo}(X)$ is the group of deck transformations of F. Show that Γ acts freely and properly discontinuously on X.

8.2. Translations. Suppose that Γ is a group of translations of \mathbb{R}^m that acts freely and properly discontinuously on \mathbb{R}^m .

(a) Show that there exist linearly independent vectors $v_1, \ldots, v_k \in \mathbb{R}^m$ such that

$$\Gamma = \left\{ x \mapsto x + \sum_{i=1}^{k} z_i v_i : (z_1, \dots, z_k) \in \mathbb{Z}^k \right\} \simeq \mathbb{Z}^k.$$

(b) Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^m/Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_i v_i$ with $z_i \in \mathbb{Z}$ as above.

8.3. Some consequences of non-positive sectional curvature. Let M be a Hadamard manifold. Prove the following:

- (a) For each $p \in M$, the map $(\exp_p)^{-1} \colon M \to TM_p$ is 1-Lipschitz.
- (b) For $p, x, y \in M$, it holds

$$d(p,x)^2 + d(p,y)^2 - 2d(p,x)d(p,y)\cos\gamma \le d(x,y)^2,$$

where γ denotes the angle in p.

(c) Let M be a complete manifold of non-positive sectional curvature with universal covering $\pi \colon \tilde{M} \to M$. If there is a geodesic $\tilde{\gamma} \colon \mathbb{R} \to \tilde{M}$ which is invariant under deck transformations, then M is not compact.